文章预测是一项长期以来一直不准确的语言描述的任务。因此,这项任务非常适合评估模型模拟本人说话者直觉的能力。为此,我们将英语英语的人和预先培训的模型的性能与文章预测的任务进行了比较,将其设置为三道选择(a/an,the,零)。我们对伯特(Bert)的实验表明,伯特(Bert)在所有文章中都超越了人类。特别是,伯特(Bert)在检测零文章时远远优于人类,这可能是因为我们使用深层神经模型可以轻松拾取的规则插入它们。更有趣的是,我们发现,当通知者协议较高时,伯特倾向于与注释者更加同意注释者,而与语料库相比,但由于通知者协议下降,因此与语料库的同意更多。我们认为,尽管接受了语料库的培训,但与注释者的这种对齐方式表明,伯特没有记住文章的使用,而是捕获了与人类直觉相似的文章的高级概括。
translated by 谷歌翻译
在本文中,我们使用一系列建模技术来调查抽象手机是否可以从接触语音声音中出现。实际上,该研究代表了尝试从语言使用的抽象出现的基于使用的语言学理论设备的尝试。我们的任务侧重于最简单的这样的假设抽象。我们测试了两个关于语言知识在语言上的语言知识的反对原则:基于内存的学习(MBL)和纠错学习(ECL)。泛化的过程得到了抽象语言学家与之运作,我们探讨了MBL和ECL是否可以产生类似语言抽象的语言知识。每个模型都有一个由一个扬声器产生的大量预处理语音。我们评估了这些简单模型所学到的一致性或稳定性以及它们引起抽象类别的能力。两种类型的模型在这些测试方面的票价不同。我们表明ECL模型可以从输入中可靠地识别了ECL模型可以学习抽象,并且至少可以从输入中可靠地识别到传统类型中的电话库存和分组。
translated by 谷歌翻译
Graph neural networks (GNNs) have been shown to be highly sensitive to the choice of aggregation function. While summing over a node's neighbours can approximate any permutation-invariant function over discrete inputs, Cohen-Karlik et al. [2020] proved there are set-aggregation problems for which summing cannot generalise to unbounded inputs, proposing recurrent neural networks regularised towards permutation-invariance as a more expressive aggregator. We show that these results carry over to the graph domain: GNNs equipped with recurrent aggregators are competitive with state-of-the-art permutation-invariant aggregators, on both synthetic benchmarks and real-world problems. However, despite the benefits of recurrent aggregators, their $O(V)$ depth makes them both difficult to parallelise and harder to train on large graphs. Inspired by the observation that a well-behaved aggregator for a GNN is a commutative monoid over its latent space, we propose a framework for constructing learnable, commutative, associative binary operators. And with this, we construct an aggregator of $O(\log V)$ depth, yielding exponential improvements for both parallelism and dependency length while achieving performance competitive with recurrent aggregators. Based on our empirical observations, our proposed learnable commutative monoid (LCM) aggregator represents a favourable tradeoff between efficient and expressive aggregators.
translated by 谷歌翻译
Searching for a path between two nodes in a graph is one of the most well-studied and fundamental problems in computer science. In numerous domains such as robotics, AI, or biology, practitioners develop search heuristics to accelerate their pathfinding algorithms. However, it is a laborious and complex process to hand-design heuristics based on the problem and the structure of a given use case. Here we present PHIL (Path Heuristic with Imitation Learning), a novel neural architecture and a training algorithm for discovering graph search and navigation heuristics from data by leveraging recent advances in imitation learning and graph representation learning. At training time, we aggregate datasets of search trajectories and ground-truth shortest path distances, which we use to train a specialized graph neural network-based heuristic function using backpropagation through steps of the pathfinding process. Our heuristic function learns graph embeddings useful for inferring node distances, runs in constant time independent of graph sizes, and can be easily incorporated in an algorithm such as A* at test time. Experiments show that PHIL reduces the number of explored nodes compared to state-of-the-art methods on benchmark datasets by 58.5\% on average, can be directly applied in diverse graphs ranging from biological networks to road networks, and allows for fast planning in time-critical robotics domains.
translated by 谷歌翻译
Neural algorithmic reasoning studies the problem of learning algorithms with neural networks, especially with graph architectures. A recent proposal, XLVIN, reaps the benefits of using a graph neural network that simulates the value iteration algorithm in deep reinforcement learning agents. It allows model-free planning without access to privileged information about the environment, which is usually unavailable. However, XLVIN only supports discrete action spaces, and is hence nontrivially applicable to most tasks of real-world interest. We expand XLVIN to continuous action spaces by discretization, and evaluate several selective expansion policies to deal with the large planning graphs. Our proposal, CNAP, demonstrates how neural algorithmic reasoning can make a measurable impact in higher-dimensional continuous control settings, such as MuJoCo, bringing gains in low-data settings and outperforming model-free baselines.
translated by 谷歌翻译
Deploying graph neural networks (GNNs) on whole-graph classification or regression tasks is known to be challenging: it often requires computing node features that are mindful of both local interactions in their neighbourhood and the global context of the graph structure. GNN architectures that navigate this space need to avoid pathological behaviours, such as bottlenecks and oversquashing, while ideally having linear time and space complexity requirements. In this work, we propose an elegant approach based on propagating information over expander graphs. We leverage an efficient method for constructing expander graphs of a given size, and use this insight to propose the EGP model. We show that EGP is able to address all of the above concerns, while requiring minimal effort to set up, and provide evidence of its empirical utility on relevant graph classification datasets and baselines in the Open Graph Benchmark. Importantly, using expander graphs as a template for message passing necessarily gives rise to negative curvature. While this appears to be counterintuitive in light of recent related work on oversquashing, we theoretically demonstrate that negatively curved edges are likely to be required to obtain scalable message passing without bottlenecks. To the best of our knowledge, this is a previously unstudied result in the context of graph representation learning, and we believe our analysis paves the way to a novel class of scalable methods to counter oversquashing in GNNs.
translated by 谷歌翻译
神经算法推理的基石是解决算法任务的能力,尤其是以一种概括分布的方式。尽管近年来,该领域的方法学改进激增,但它们主要集中在建立专家模型上。专业模型能够学习仅执行一种算法或具有相同控制流骨干的算法的集合。相反,在这里,我们专注于构建通才神经算法学习者 - 单个图形神经网络处理器,能够学习执行各种算法,例如分类,搜索,动态编程,路径触发和几何学。我们利用CLRS基准来凭经验表明,就像在感知领域的最新成功一样,通才算法学习者可以通过“合并”知识来构建。也就是说,只要我们能够在单任务制度中学习很好地执行它们,就可以以多任务的方式有效地学习算法。在此激励的基础上,我们为CLR提供了一系列改进,对CLR的输入表示,培训制度和处理器体系结构,将平均单任务性能提高了20%以上。然后,我们进行了多任务学习者的彻底消融,以利用这些改进。我们的结果表明,一位通才学习者有效地结合了专家模型所捕获的知识。
translated by 谷歌翻译
弥补联邦学习(FL)模型的分散培训中所涉及的成本的激励措施是客户长期参与的关键刺激。但是,由于缺乏以下信息,请说服客户在FL上进行质量参与:(i)有关客户数据质量和属性的完整信息; (ii)客户数据贡献的价值; (iii)货币奖励优惠的可信赖机制。这通常会导致培训和沟通效率较差。尽管有几项工作着重于战略激励设计和客户选择以克服这个问题,但就针对预见的数字经济(包括Web 3.0)量身定制的总体设计存在一个重大的知识差距,同时同时实现了学习目标。为了解决这一差距,我们提出了一个基于贡献的令牌化激励方案,即\ texttt {fedToken},并得到区块链技术的支持,可确保在模型培训期间与其数据估值相对应的客户之间的公平分配。利用工程设计的基于Shapley的计划,我们首先近似模型聚合过程中本地模型的贡献,然后战略性地安排客户降低沟通循环的融合和锚定方式,以分配\ emph {负担得起的}代币在受限的货币预算下。广泛的模拟证明了我们提出的方法的功效。
translated by 谷歌翻译
本文提出了Salenet-端到端卷积神经网络(CNN),用于使用前额叶脑电图(EEG)进行持续注意水平评估。提出了一种偏置驱动的修剪方法,以及小组卷积,全局平均池(GAP),接近零的修剪,重量聚类和模型压缩的量化,达到183.11x的总压缩比。在这项工作中,压缩的分配器在记录的6个受试者EEG数据库上获得了最新的主题无关的持续注意力分类精度为84.2%。该沙发在ARTIX-7 FPGA上实施,竞争功耗为0.11 W,能源效率为8.19 GOPS/W。
translated by 谷歌翻译
在这项工作中,我们提出了一个框架,用于部署的无人驾驶汽车(UAV)的便携式接入点(PAP),以服务于一组接地节点(GNS)。除PAP和GNS外,该系统还由安装在人造结构上的一组智能反射表面(IRS)组成,以增加每焦耳的能源消耗的钻头数量,这些能量消耗被测量为全球能源效率(GEE)。 PAP的GEE轨迹是通过考虑UAV推进能量消耗和PAP电池的PEUKERT效应来设计的,PAP电池代表了精确的电池放电曲线作为无人机功耗概况的非线性功能。 GEE轨迹设计问题分为两个阶段:在第一个阶段,使用多层圆形填料方法找到了PAP的路径和可行位置,并使用替代方案计算所需的IRS相移值优化方法考虑了IRS元素的幅度和相位响应之间的相互依赖性;在第二阶段,使用新型的多轨迹设计算法计算PAP飞行速度和用户调度。数值评估表明:忽略Peukert效应高估了PAP的可用飞行时间;一定的阈值后,增加电池尺寸会减少PAP的可用飞行时间;与其他基线场景相比,IRS模块的存在改善了系统的GEE。与使用顺序凸编程和Dinkelbach算法的组合开发的单圈轨迹相比,多圈轨迹可节省更多的能量。
translated by 谷歌翻译